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Numerous special techniques have been proposed for the numerical evaluation of 
Fourier transform integrals. Two of these techniques, a method proposed by Broyles 
based on the trapezoidal rule and one due to Filon, are compared. Also the efficacy 
of an algorithm proposed by Cooley and Tukey for doing Fourier sums rapidly is 
discussed and it is shown how this algorithm may be applied to the above Fourier trans- 
form techniques. Finally, the numerical evaluation of Fourier-Bessel transforms is 
discussed. 

I. INTRODUCTION 

The numerical integration of the three-dimensional Fourier transform integrals, 
e.g., 

and 

f(k) = 4~ Irf(r)(r/k) sin kr dr, 

f(r) = & Jy f(k)(k/r) sin kr dk, (lb) 

is beset with difficulties. For large k, the graph of rf(r) sin kr consists of positive 
and negative areas of nearly equal size. The addition of these two areas results 
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in substantial cancellation with a consequent loss of accuracy. Furthermore, for 
large k, the function oscillates very rapidly, necessitating the use of very fine grid 
spacing. 

Because of the widespread occurrence and usefulness of Fourier transforms, 
many special techniques have been proposed for their numerical evaluation [I]. 
It is the objective of this paper to compare two of the techniques and to discuss the 
errors associated with them. 

II. THE BROYLES MODIFICATION OF THE TRAPEZOIDAL RULE 

The first technique is based on the trapezoidal rule and has recently been 
proposed by Broyles [2]. Broyles has shown that when the upper limits of inte- 
gration are truncated to (N - I)i, and the integrals in Eqs. (la) and (I b) are 
replaced by the sums 

and 

then the inverse off(r) from Eq. (2b) agrees exactly, within calculational errors, 
with the original given f(r), provided that 

277 
‘R=2N-11 (3) 

where r^ and k are the grid size for Y and k, respectively, and N is the number of 
grid points. 

To check the accuracy of this method, we have numerically evaluated the 
Fourier sine transform of the function 

which may also be analytically evaluated with the aid of the integral 

I 
277 

x3 sin kx dx = 
12rr2k2 - 6 

k4 
sin 2n-k - c8gk” - 12r1 cos 2rk. (4b) 

0 k3 
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In Table I, we give the exact transform of c(x) and compare it with the value 
obtained from Eqs. (2a) and (3) on a GE 635 computer using a Fortran IV, 
single-precision program with r^ = 0.01 r, N = 201. Using Eq. (2b), we have then 
inverted the resulting transforms in an attempt to regain the original function. 
These results are tabulated in the first three columns of Table II. Although the 
inverse Fourier 

TABLE I 

The Fourier Sine Transform of c(x) Multiplied by k/4n 

k Exact value Numerical transforma 

0.49815 196.444 196.465 

2.4938 97.7026 97.8047 

4.9875 -49.6505 -49.8547 

9.9751 -24.7105 -25.1187 

20.4489 11.5951 12.4298 

34.9127 -6.1128 -7.5292 

49.875 -3.5569 - 5.5623 
75.810 -1.2328 -4.2211 

99.751 0.02207 -3.9256 

a Eq. (2a) and (3) were used to evaluate the transform. 

transform agrees quite well with the original function, significant discrepancies 
appear at large k for the transform itself. Hence, forcing the inverse transform to 
agree with the starting function does not necessarily lead to acceptable values for 
the transform. In the next section, we consider another technique which does not 
have enforced consistency, but which does appear to have superior accuracy under 
some circumstances. 

III. FILON’S METHOD 

The second technique was proposed by Filon [l, 31. Filon’s method requires the 
approximation of g(r) = rf(r) by a parabola and then an integration by parts. 
This procedure yields for a finite interval of integration 

s b g(r) sin kr dr E h{--[g(b) ~0s kb - g(a) ~0s kal + j&n + @&, (5) 
a 
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TABLE II 

A Comparison of the Inverse Fourier Sine Transform of c^(k) with c(x) 

x X2 Eq. (2b) Eq.(141 

0.15707 0.0246740 0.0251305 0.0241296 
0.50265 0.2526619 0.2527272 0.2525220 
1.0996 1.209026 1.209058 1.209089 
1.5707 2.467401 2.467450 2.467306 
2.0106 4.042590 4.042555 4.042593 
2.9531 8.720784 8.720830 8.720793 
3.8013 14.45009 14.45009 14.45005 
4.8381 23.40676 23.40678 23.40676 
5.3721 28.85972 28.85972 28.85970 
6.2203 38.69282 38.69290 38.69279 

where 

S,, = Q g(u) sin ku + g(u + 2h) sin k(u + 2/z) 

+ -*a + &g(b) sin kb, 

Sznpl = g(u + h) sin k(a + h) + g(u + 34 sin k(a + 3h) 

+ ..*+g(b--/r)sink(b-k), 

(6) 

(7) 

$ = kh = ““,, ‘) , 

a = &(e) = 82 + 8 sin e cos e - 2 sin2 e 

83 
3 

P = iw) = 
2[e(i + ~09 e) - 2 sin e cos e] 

83 
7 (8) 

and 

Y = r(e) = 
4(sin e - e cos e) 

83 
(9) 

In Table III, we compare the exact Fourier sine transform of C(X) of Eq. (4) with 
the Filon value and with the Broyles value for a number of points, for variety, 
mostly different from those of Table I, but within the same range. In Table IV, 
a comparison is made for the function 

d(x) = 17” o<x<27r 
x > 27r. (94 
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The exact value is obtained from 

s 2n 
x cos x sin kx dx = 

sin 2n(k - 1) + sin 27r(k t- 1 
0 (k - 1)” (k + o2 - 

CW 
From these tables, it appears that the two methods are of similar accuracy for 

sine transforms with k < 10. Broyle’s technique is somewhat faster computa- 
tionalIy. For large k’s, Filon’s method is appreciably better. 

TABLE III 

The Fourier Sine Transform of c(x) Multiplied by k/4m 

k Exact value Filon” Broylesb 

0.49875 196.444 196.448 196.465 
1.9950 - 120.449 - 120.449 - 120.531 
3.9900 -61.918 -61.918 -62.081 
5.9850 -41.397 -41.397 -41.642 

10.474 23.507 23.507 23.936 
20.948 -11.289 -11.289 - 12.144 
40.399 4.9872 4.9872 6.6211 
75.810 - 1 a2328 - 1.2328 -4.2271 
99.751 -0.2207 -0.02210 -3.9256 

“h =9. 
“P, k, N as in Table 1. 

TABLE IV 

The Fourier Sine Transform of d(x) 
Multiplied by k/4n 

k Exact value Filon Broyles 

0.49875 -4.13662 -4.15405 -4.15343 
1.9950 -4.23936 -4.22178 -4.22385 
3.9900 - 1.68649 -1.68173 -1.68586 
5.9850 - 1.08090 - 1.07805 - 1.08424 
7.9800 -0.79776 -0.79571 -0.80396 

10.474 0.60031 0.59877 0.60960 
15.461 0.39815 0.39713 0.41310 
20.948 -0.28599 -0.28526 -0.30685 
30.424 0.18457 0.18408 0.21533 
40.399 0.12605 0.12569 0.16697 
50.873 -0.08671 -0.08643 -0.13808 
75.810 -0.03107 -0.03091 -0.10655 
99.751 -4.586 x l0-a -3.586 x lO-3 -9.894 x 10-r 
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IV. FAST-FOURIER-TRANSFORM 

Recently, Cooley and Tukey [4] have devised an algorithm, which we shall call 
“fast-Fourier-transform,” whereby sums of the form 

M-l 

d(m) = C a(n) exp[27+rm/M], 
TL=O 

(10) 

can be computed considerably more rapidly than by previous techniques provided 
M = 2z and I is an integer. Library subroutine programs to evaluate Eq. (IO) have 
been written and are available from both IBM (Fort) and General Electric 
(RLFORT). Hence, one would like to use these programs to perform the summa- 
tions in Filon’s method or Broyles’ method. 

Rasaiah and Friedman [5] have shown that it is possible to use the fast-Fourier- 
transform technique to calculate the sums in Eqs. (2a) and (2b) although there are 
several difficulties involved. First, M = 2z has to be even while 2N - 1 is odd. 
Thus, the argument of the sine function in Eq. (10) contains A4 = 2N instead of 
2N - 1 which causes an error of l/M in the resulting transforms (see Ref. [5]). 
Secondly, Eq. (10) consists of M - 1 terms while Eq. (2) has only N - 1 terms. 

As an alternative to the method of Rasaiah and Friedman, we may propose the 
following approach. We substitute Eq. (2b) into Eq. (2a) and find 

Broyles has shown that setting the second sum in Eq. (11) proportional to the 
kronecker delta 8mm' leads to Eq. (3), and to the inverse of a transform equal to 
the original function. However, the Euler-Maclaurin sum formula [6] 

s If(x) dx = TV + 5’ (-)m;‘$x)*m f’2”-“(x) 1’ + R, , 
??l=l a 

(12) 

where 

T, is the r-point trapezoidal rule sum, the B, are the Bernoulli numbers andf(“)(x) 
is the n-th derivative of f(x), may be used to replace the sum by an integral. 
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Recalling that for a periodic functionf(n)(u) = ftn)(b), and neglecting the remainder 
term R, , Eq. (12) may be rewritten 

The orthogonality of the integral leads to the following expression for the 
product ik 

“LNT1 
27l -=-, 

2N-2 

To see whether Eq. (14) is appreciably inferior to Eq. (3) of Broyles, we have 
tabulated the inverse Fourier transform of the function of Eq. (4a), using Eq. (14), 
in the last column of Table 2. Comparison of columns 3 and 4 demonstrates that 
Eq. (14) can lead to results comparable in consistency with those from Eq. (3). 

The advantage of the approximation of Eq. (14) is that, for realf(r), Eq. (2a) 
can be evaluated by the fast-Fourier-transform technique, as can be seen by 
substituting into the imaginary part of Eq. (10): 

A~f=2N-2=2~, (15) 

u(n) = nf(Ai), O<n<N-1 

u(n) = 0, N<n<.<N-2. 
(16) 

Next we shall show how the fast-Fourier-transform may be used to do the sums 
in Filon’s method, albeit at the cost of arbitrary grid spacing. 

Setting M = 2N = 2z and r^l = 2rr/M, where r^ = h and k = n& and letting 
the lower limit of Eq. (5) equal zero, we can rewrite Eq. (5) as 

s 
b 

o g(r) sin kr dr s h{a[ g(0) - g(b) cos kb]} 

M-l 

+ y C g(ni) sin(2rnm/M) 
W-0 

N-l 
B + (P - y) c g(2ni) sin(2nnm/N) + 2 g(b) sin kb. (20) 

n=0 

The sums in Eq. (17) are of the form of Eq. (lo), and hence the fast-Fourier- 
transform may be employed. The use of the fast-Fourier-transform in the Filon 
method results in a computational time which is greater than the time for the 
trapezoidal rule. We conclude that the trapezoidal rule is preferable for sine 
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transforms with small values of k, while Filon’s rule should be used for large values 
of k, provided that in practice the Filon result remains more accurate using the 
fast-Fourier-technique. 

IV. FOURIER-BESSEL TRANSFORMS 

In this section we discuss the numerical evaluation of Fourier-Bessel transforms. 
We shall define the Fourier-Bessel transform 

TABLE V 

The nth Order Fourier-Bessel Transform” 

r Original function 

0.05 - 15.347577 

0.50 - 8.4084868 

0.95 -3.1859760 

1.00 -2.1181678 

1.05 0.0 

2.00 0.0 
3.00 0.0 

4.00 0.0 

5.00 0.0 

n=O 

-15.347571 

-8.4084870 

-3.1859759 

- 2.7781618 

3.4 x 10-B 

1.6 x lo-* 

1.4 x 10-S 

8.7 x 10-10 

3.8 x lo-$ 

n=2 ?I=4 

-11.359 

-8.488 

-3.175 

-2.789 

9.2 x 1O-3 

-2.7 x 1O-3 

-1.3 x 10-s 

-8.2 x 1O-4 

-6.2 x lo-* 

-.- 1.937 

-8.269 

-3.225 

-2.743 

-3.2 x 1O-2 

9.4 x IO-3 

4.6 x 1O-3 

2.9 x 1O-3 

2.2 x 10-S 

n=6 

-0.185 

-8.521 

-3.149 

m-2.812 

-3.1 x 10-S 

-9.1 x IO-8 

-4.4 x 10-s 

-2.8 x 1O-3 

-2.1 x 10-Z 

a The nth order Fourier-Bessel transform of the original function was performed. The resulting 
function was then transformed again in an attempt to regain the original function. 

wherej,(kr) is the spherical Bessel function of order n and is related to the ordinary 
Bessel function J,(kr) as follows 

.A%(4 = (g J7&+1,,W 

The inverse transform is 

(1% 

(20) 
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Except for the IZ = 0 case, when j,(x) = sin x/x, the spherical Bessel functions 
contain cosine terms, and utilization of the Broyles’ trapezoidal rule may not 
result in accurate transforms. To test the accuracy of his rule, we used it to evaluate 
the first four even spherical Bessel transforms of the function tabulated in the first 
column of Table V [7]. We then inverted these transforms to regain the original 
function [8]. The results are tabulated in Table V. It is obvious from TableV that the 
transforms obtained by using the Broyles’ rule grow progressively worse asthe order 
of the spherical Bessel function increases. We note that Filon’s rule cannot be 
applied to the spherical Bessel functions. It would seem, therefore, that special 
numerical techniques are required for Fourier-Bessel transforms [9]. 
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